Discrete Mathematics

์ปดํ“จํ„ฐ๋ฅผ ์œ„ํ•œ ์ˆ˜ํ•™

Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics.

์ด์‚ฐ์ˆ˜ํ•™ ๊ฐœ์š”

์ฐธ๊ณผ ๊ฑฐ์ง“์œผ๋กœ ์‚ดํŽด๋ณด๋Š” ์ปดํ“จํ„ฐ ์ˆ˜ํ•™

์™œ ๋ฐฐ์›Œ์•ผ ํ•˜๋Š”๊ฐ€?

  • ์ด์‚ฐ์ˆ˜ํ•™์ด๋ž€ ๋ถˆ์—ฐ์†์ ์ธ ์ˆซ์ž๋ฅผ ๋‹ค๋ฃจ๋Š” ์ˆ˜ํ•™

  • ์ปดํ“จํ„ฐ์—์„œ๋Š” ๋‚ด๋ถ€์ ์œผ๋กœ 0๊ณผ 1๋งŒ์„ ๋‹ค๋ฃจ๋Š”๋ฐ ๊ทธ๋Ÿฌํ•œ ๋ถˆ์—ฐ์†์ ์ธ ๋ฐ์ดํ„ฐ์˜ ํ๋ฆ„์„ ๋‹ค๋ฃจ๊ธฐ์— ์ ํ•ฉํ•œ ์ˆ˜ํ•™์  ์‚ฌ๊ณ ๋ฅผ ๋ฐฐ์–‘ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ๊ฐ•์˜๋‹ค

  • ์ด์‚ฐ์ˆ˜ํ•™์—์„œ ๋‹ค๋ฃจ๋Š” ๋‚ด์šฉ์ด ์ž๋ฃŒ๊ตฌ์กฐ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋“ฑ์˜ ๋ฒ ์ด์Šค๊ฐ€ ๋˜์–ด ์ „์ฒด์ ์ธ Computational Thinking์„ ๊ธธ๋Ÿฌ์ค€๋‹ค

์ด์‚ฐ์ˆ˜ํ•™์€ ์ปดํ“จํ„ฐ ๊ณผํ•™์˜ ๋ฒ ์ด์Šค ํ•™๋ฌธ์ด๋‹ค!

๋ช…์ œ์™€ ์—ฐ์‚ฐ์ž

๋ช…์ œ (proposition)

์ง„์‹ค ํ˜น์€ ๊ฑฐ์ง“

  • ์ฐธ(True)์ด๋‚˜ ๊ฑฐ์ง“(False)์œผ๋กœ ์ง„๋ฆฌ๋ฅผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์žฅ

  • ๋ช…์ œ๋Š” 0 ๋˜๋Š” 1๋งŒ์„ ๊ฐ€์ง€๋Š” ์ปดํ“จํ„ฐ ๋ฉ”๋ชจ๋ฆฌ์ฒ˜๋Ÿผ ํ•ญ์ƒ ์ฐธ๊ณผ ๊ฑฐ์ง“ ๋‘˜ ์ค‘ ํ•˜๋‚˜์˜ ๊ฐ’๋งŒ์„ ๊ฐ€์ง„๋‹ค

  • ์—ฌ๋Ÿฌ๊ฐœ์˜ ๋ช…์ œ๋ฅผ ์กฐํ•ฉํ•  ์ˆ˜๋„ ์žˆ๋‹ค

    • ํ•ฉ์„ฑ ๋ช…์ œ (Compound Proposition)

๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž (logical operator)

์—ฐ์‚ฐ์ž๋Š” ๋ช…์ œ๋ฅผ ์—ฐ์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ์ด๋ฉฐ, ์ด์‚ฐ์ˆ˜ํ•™์˜ ๊ธฐ๋ณธ ์—ฐ์‚ฐ์ž๋กœ๋Š” 6๊ฐ€์ง€๊ฐ€ ์žˆ๋‹ค

image-20200423194638742

  1. Not

    • ๋’ค์— ์˜ค๋Š” ๋ช…์ œ์— ๋Œ€ํ•ด ์ฐธ <-> ๊ฑฐ์ง“์„ ๋ฐ”๊พธ์–ด์คŒ

  2. And

    • ๋…ผ๋ฆฌ๊ณฑ

    • ๋‘ ๊ฐœ์˜ ๋ช…์ œ๋ฅผ ๋ฌถ์„ ๋•Œ ์‚ฌ์šฉ

    • ๋‘˜ ๋‹ค ์ฐธ์ผ๋•Œ๋งŒ ์ฐธ

      • ํ•œ ๊ฐœ๋ผ๋„ ๊ฑฐ์ง“์ด๋ฉด ๊ฑฐ์ง“

  3. Or

    • ๋…ผ๋ฆฌํ•ฉ

    • ๋‘˜ ์ค‘ ํ•˜๋‚˜๋ผ๋„ ์ฐธ์ด๋ฉด ์ฐธ

  4. Exclusive or

    • ๋ฐฐํƒ€์  ๋…ผ๋ฆฌํ•ฉ

      • ์„œ๋กœ๋ฅผ ๋ฐฐ์ œํ•œ๋‹ค

    • ๋‘˜ ์ค‘ ๋‹จ ํ•œ ๊ฐœ๋งŒ ์ฐธ์ธ ๊ฒฝ์šฐ ์ฐธ

  5. Implication (ํ•จ์ถ•)

    • ์กฐ๊ฑด ๋ช…์ œ (Conditional Proposition)

      • ์–ด๋– ํ•œ ์กฐ๊ฑด์ผ๋•Œ, ์ด๋Ÿฐ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜จ๋‹ค

        • ์กฐ๊ฑด๊ณผ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅธ ํ๋ฆ„์„ ํ‘œํ˜„ํ•  ๋•Œ ์‚ฌ์šฉ

      • ์›์ธ์ด ๋˜๋Š” ๋ช…์ œ์™€ ๊ฒฐ๊ณผ๊ฐ€ ๋˜๋Š” ๋ช…์ œ๊ฐ€ ์กด์žฌํ•˜๋Š” ๋ช…์ œ

    • p -> q

      • p๊ฐ€ True, q๊ฐ€ False์ผ ๋•Œ์—๋งŒ ์กฐ๊ฑด ๋ช…์ œ๋Š” False ๊ฐ’์„ ๋ฐ˜ํ™˜

  6. Biconditional

    • ์Œ๋ฐฉ ์กฐ๊ฑด ๋ช…์ œ

    • ๋‘ ๊ฐ’์ด ์„œ๋กœ ์ผ์น˜ํ•  ๋•Œ์—๋งŒ ์Œ๋ฐฉ ์กฐ๊ฑด ๋ช…์ œ๋Š” True ๊ฐ’์„ ๋ฐ˜ํ™˜ํ•จ

์—ญ, ์ด , ๋Œ€์šฐ (converse, inverse, contrapositive)

์ง„๋ฆฌํ‘œ (Truth-Table)

  • ๊ฐ ๋ช…์ œ ์‚ฌ์ด์˜ ๊ด€๊ณ„์‹์˜ ์ง„๋ฆฟ๊ฐ’์„ ๋ณด์—ฌ์ฃผ๋Š” ํ‘œ

  • ์•„๋ฌด๋ฆฌ ๋ณต์žกํ•œ ํ•ฉ์„ฑ ๋ช…์ œ ๋ผ๋„ ์ง„๋ฆฌํ‘œ๋ฅผ ํ†ตํ•ด ํ’€์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค!

img

์—ญ, ์ด, ๋Œ€์šฐ

image-20200424040719609

  • ์กฐ๊ฑด ๋ช…์ œ (Conditional Proposition)์—์„œ ์‚ฌ์šฉํ•จ

  • ํ•˜๋‚˜์˜ ๋ช…์ œ๋ฅผ ๋ณ€ํ˜•ํ•ด ํ‘œํ—Œํ•จ

  • ์ฆ๋ช…์— ๋„์›€์„ ์ค€๋‹ค

  • ์ฆ๋ช…ํ•˜๊ธฐ ์–ด๋ ค์šด ๋ช…์ œ๋Š” ๋Œ€์šฐ๋ฅผ ์ด์šฉํ•ด ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ์Œ

    • ์–ด๋–ค ๋ช…์ œ์˜ ๋Œ€์šฐ๊ฐ€ ์ฐธ์ธ ๊ฒฝ์šฐ, ๋ณธ ๋ช…์ œ ๋˜ํ•œ ์ฐธ์ด๊ธฐ ๋•Œ๋ฌธ!

๋™์น˜ (equivalent)

๋‘ ๊ฐœ์˜ ๋ช…์ œ๊ฐ€ ์„œ๋กœ ๊ฐ™์€ ์ง„๋ฆฌ๊ฐ’์„ ๊ฐ–๊ณ  ์žˆ์„ ๋•Œ

๋™์น˜์˜ ์˜๋ฏธ

  • ๋™์น˜๋ž€ '๋…ผ๋ฆฌ์ ์œผ๋กœ ์ผ์น˜ํ•œ๋‹ค' ๋Š” ์˜๋ฏธ

  • ๊ฐ™์€ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋” ์‰ฌ์šด ๋ช…์ œ๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ

  • ๋™์น˜ ๋ฒ•์น™์—๋Š” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜๊ฐ€ ์žˆ์Œ

๋™์น˜ ๋ฒ•์น™์„ ์ด์šฉํ•ด ์ฆ๋ช…ํ•˜๊ธฐ

๋ณต์žกํ•ด ๋ณด์ด๋Š” ํ•ฉ์…ฉ ๋ช…์ œ (compositional proposition)๋„ ๋™์น˜ ๋ฒ•์น™์„ ์ด์šฉํ•ด ๊ฐ„๋‹จํ•œ ๋ช…์ œ๋กœ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๋‹ค!

\begin{tabular}{ ||c||c|| }      \hline     Equivalence & Name of Identity\\     \hline          \hline     p\wedge T \equiv p &  Identity Laws\\     p\vee F \equiv p &  \\     \hline          p\wedge F \equiv F &  Domination Laws\\     p\vee T \equiv T &  \\     \hline          p\wedge p \equiv p &  Idempotent Laws\\     p\vee p \equiv p &  \\     \hline          \neg(\neg p) \equiv p &  Double Negation Law\\     \hline          p\wedge q \equiv q\wedge p &  Commutative Laws\\     p\vee q \equiv q\vee p &  \\     \hline          (p\wedge q) \wedge r\equiv p\wedge (q \wedge r) &  Associative Laws\\     (p\vee q) \vee r\equiv p\vee (q \vee r) &  \\     \hline      p\wedge (q \vee r)\equiv (p\wedge q)\vee (p\wedge r) &  Ditributive Laws\\     p\vee (q \wedge r)\equiv (p\vee q)\wedge (p\vee r) &  \\     \hline          \hline      \neg(p\wedge q) \equiv \neg p \vee \neg q &  De Morgan's Laws\\     \neg(p\vee q) \equiv \neg p \wedge \neg q &  \\     \hline      p\wedge (p \vee q)\equiv p &  Absorption Laws\\     p\vee (p \wedge q)\equiv p &  \\     \hline          p\wedge \neg p \equiv F &  Negation Laws\\     p\vee \neg p \equiv T &  \\     \hline \end{tabular}

  • ํ•ญ๋“ฑ ๋ฒ•์น™

    • ๋น„๊ต ๋Œ€์ƒ์˜ True/False ์—ฌ๋ถ€์— ๊ด€๊ณ„ ์—†์ด p ๊ฐ’์„ ๊ฐ€์ง„๋‹ค

  • ์ง€๋ฐฐ ๋ฒ•์น™

    • ๋น„๊ต ๋Œ€์ƒ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ์ง€๋ฐฐ์ ์œผ๋กœ ๊ฒฐ์ •๋œ๋‹ค

  • ๋“œ ๋ชจ๋ฅด๊ฐ„์˜ ๋ฒ•์น™

    • p and q ์ผ ๋•Œ, not์„ ๋ถ™์ด๋ฉด ๊ฐ๊ฐ ~p or ~q ๊ฐ€ ๋œ๋‹ค

    • ๋ฐ˜๋Œ€๋กœ p or q์— not์„ ๋ถ™์ด๋ฉด ๊ฐ๊ฐ ~p and ~q๊ฐ€ ๋œ๋‹ค

  • ํก์ˆ˜ ๋ฒ•์น™

    • ๋ฐ”๊นฅ์— ์žˆ๋Š” ๊ฐ’์ด ๊ฐ•๋ ฅํ•ด์„œ ๊ด„ํ˜ธ () ์•ˆ์˜ ์—ฌ๋ถ€์— ์ƒ๊ด€ ์—†์ด ๋ฐ”๊นฅ์˜ ๊ฒฐ๊ณผ์— ํก์ˆ˜๋œ๋‹ค

  • ๋ถ€์ • ๋ฒ•์น™

    • ๋‘˜ ์ค‘ ํ•˜๋‚˜๊ฐ€ not ์ผ ๋•Œ and ์—ฐ์‚ฐ์ด๋ฉด True, or ์—ฐ์‚ฐ์ด๋ฉด False ๋ฐ˜ํ™˜

  • ํ•จ์ถ• ๋ฒ•์น™

    • p -> q <-> ~q or q

Last updated

Was this helpful?