Skip to content

Getting error "RuntimeError: Input type (torch.FloatTensor) and weight type (XPUFloatType) should be the same or input should be a MKLDNN tensor and weight is a dense tensor" while using Custom Whisper on LNL - Windows with iGPU. #825

Open
@varshasrighakollapu

Description

@varshasrighakollapu

Describe the bug

While running the custom whisper model on Lunar Lake on Windows using IPEX - XPU, I am getting the following error:
"INFO:main:Extracted Whisper features with shape (1, 80, 3000).
INFO:main:Running inference.
INFO:main:Passing tensor POSITIonALLY to model (last resort).
ERROR:main:Inference error: Input type (torch.FloatTensor) and weight type (XPUFloatType) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
Traceback (most recent call last):
File "C:\Users\sdp\Desktop\latest\ipex_inference_test.py", line 191, in infer
outputs = self._model(input_tensor)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\onnx2pytorch\convert\model.py", line 224, in forward
activations[out_op_id] = op(*in_activations)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\torch\nn\modules\conv.py", line 375, in forward
return self._conv_forward(input, self.weight, self.bias)
File "C:\Users\sdp\Desktop\latest\ipex_env\lib\site-packages\torch\nn\modules\conv.py", line 370, in _conv_forward
return F.conv1d(
RuntimeError: Input type (torch.FloatTensor) and weight type (XPUFloatType) should be the same or input should be a MKLDNN tensor and weight is a dense tensor "

Versions

Using intel_extension_for_pytorch==2.6.10+xpu and python - 3.10

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions