LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dasard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Importance of epochs
  • How epochs work
  • Change the number of epochs in Edge Impulse
  • Changing the epochs in Expert Mode
  • Apply Early Stopping in Expert Mode

Was this helpful?

Export as PDF
  1. Concepts
  2. Machine learning
  3. Neural networks

Epochs

PreviousLearned optimizer (VeLO)NextWhat is embedded ML, anyway?

Last updated 11 months ago

Was this helpful?

An epoch (also known as training cycle) in machine learning is a term used to describe one complete pass through the entire training dataset by the learning algorithm. During an epoch, the machine learning model is exposed to every example in the dataset once, allowing it to learn from the data and adjust its parameters (weights) accordingly. The number of epochs is a hyperparameter that determines the number of times the learning algorithm will work through the entire training dataset.

Importance of epochs

The number of epochs is an important hyperparameter for the training process of a machine learning model. Too few epochs can result in an underfitted model, where the model has not learned enough from the training data to make accurate predictions. On the other hand, too many epochs can lead to overfitting, where the model has learned too well from the training data, including the noise, making it perform poorly on new, unseen data.

When to change the number of epochs (training cycles)

Selecting the appropriate number of epochs is a balance between underfitting and overfitting.

Underfitting: One of the most straightforward indicators of underfitting is if the model performs poorly on the training data. This can be observed in Edge Impulse Studio through metrics such as accuracy, or loss, depending on the type of problem (classification or regression). If these metrics indicate poor performance, it suggests that the model has not learned the patterns of the data well. In that case, increasing the number of epochs can improve your model performance. Please note that other solutions exist such as increasing your neural network architecture complexity, changing the preprocessing technique or reducing regularization.

Overfitting: Detecting overfitting involves recognizing when the model has learned too much from the training data, including its noise and outliers, to the detriment of its performance on new, unseen data. Overfitting is characterized by the model performing exceptionally well on the training data but poorly on the validation or test data. Evaluating overfitting can be achieved by comparing the performance of the model between the training set and the validation set during training. When the performance on the validation set starts to degrade, it might indicate that the model is beginning to overfit the training data. In that case, decreasing the number of epochs can improve your model performance. As with underfitting, other solutions exist to reduce overfitting such as increasing the number of training data, adding regularization techniques to add penalties on large weights, adding dropout layers, simplifying the model architecture and even using.

How epochs work

During each epoch, the dataset is typically divided into smaller batches. This approach, known as batch training, allows for more efficient and faster processing, especially with large datasets. The learning algorithm iterates through these batches, making predictions, calculating errors, and updating model parameters using an optimizer. An epoch consists of the following steps:

  1. Initialization: Before training begins, the model's internal parameters (weights) are typically initialized randomly or according to a specific strategy.

  2. Forward pass: For each example in the training dataset, the model makes a prediction (forward pass). This involves calculating the output of the model given its current weights and the input data.

  3. Backward pass (backpropagation): The model updates its weights to reduce the loss. This is done through a process called backpropagation, where the gradient of the loss function of each weight is computed. The gradients indicate how the weights should be adjusted to minimize the loss.

  4. Iteration over batches: An epoch consists of iterating over all batches in the dataset, performing the forward pass, loss calculation, backpropagation, and weight update for each batch.

  5. Completion of an epoch: Once the model has processed all batches in the dataset, one epoch is complete. The model has now seen each example in the dataset exactly once.

What's the difference between an epoch and a batch size?

When training neural networks, both epochs and batch sizes are fundamental concepts, yet they serve distinct roles in the training process. An epoch represents one complete pass through the entire training dataset, where the model has the opportunity to learn from every example within the dataset once. This means that if you set the training to run for, say, 10 epochs, the entire dataset will be passed through the neural network 10 times, allowing the model to refine its weights and biases to improve its accuracy with each pass.

On the other hand, the batch size refers to the number of training examples utilized in one iteration of the training process. Instead of passing the entire dataset through the network at once (which can be computationally expensive and memory-intensive), the dataset is divided into smaller batches. For example, if you have a dataset of 2000 examples and choose a batch size of 100, it would take 20 iterations (batches) to complete one epoch. The batch size affects the updating of model parameters; with smaller batch sizes leading to more frequent updates, potentially increasing the granularity of the learning process but also introducing more variance in the updates. Conversely, larger batch sizes provide a more stable gradient estimate, but with less frequent updates, it could lead to slower convergence.

Change the number of epochs in Edge Impulse

Changing the epochs in Expert Mode

You can modify the following line in the expert mode to change the number of training cycles:

EPOCHS = args.epochs or 100

When compiling and training your model, specify the number of epochs in the model.fit() function as follows:

model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks)

Apply Early Stopping in Expert Mode

The following approach allows your model to stop training as soon as it starts overfitting, or if further training doesn't lead to better performance, making your training process more efficient and potentially leading to better model performance.

Import EarlyStopping from tensorflow.keras.callbacks.

from tensorflow.keras.callbacks import EarlyStopping

Instantiate an EarlyStopping callback, specifying the metric to monitor (e.g., val_loss or val_accuracy), the minimum change (min_delta) that qualifies as an improvement, the number of epochs with no improvement after which training will be stopped (patience), and whether training should stop immediately after improvement (restore_best_weights).

# apply early stopping
callbacks.append(EarlyStopping(
    monitor='val_accuracy',    # Monitor validation accuracy
    min_delta=0.005,           # Minimum change to qualify as an improvement
    patience=15,               # Stop after 15 epochs without improvement
    verbose=1,                 # Print messages
    restore_best_weights=True  # Restore model weights from the epoch with the best value of the monitored quantity.
))

Loss calculation: After making a prediction, the model calculates the(or error) by comparing its prediction to the actual target value using a loss function. The loss function quantifies how far the model's prediction is from the target.

Weight update: Using analgorithm (such as Gradient Descent, Adam, etc.), the model adjusts its weights based on the gradients calculated during backpropagation. The goal is to reduce the loss by making the model's predictions more accurate.

In Edge Impulse, you can specify the number of training cycles in thefor your neural network-based models. Adjusting this parameter allows you to fine-tune the training process, aiming for the best possible model performance on your specific dataset. It's important to monitor both training and validation loss to determine the optimal number of epochs for your model.

When using thein Edge Impulse, you can access the full Keras API:

Find the full early stopping documentation onor have a look atas an example.

loss
optimization
Keras documentation
this Edge Impulse public project
early stopping
Overfitting vs underfitting
Illustration of an epoch
Forward pass
Backpropagation
training settings
Expert Mode