LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dasard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • C++ Libraries
  • Input to the run_classifier function
  • Signal layout for time-series data
  • Signal layout for image data
  • Directly quantize image data
  • Static allocation

Was this helpful?

Export as PDF
  1. Run inference

C++ library

PreviousEdge Impulse Python SDKNextAs a generic C++ library

Last updated 2 months ago

Was this helpful?

The provided methods package all your signal processing blocks, configuration and learning blocks up into a single package. You can include this package in your own application to run the impulse locally.

C++ Libraries

Impulses can be deployed as a C++ library. The library does not have any external dependencies and can be built with any C++11 compiler, see.

We have end-to-end guides for:

We also have tutorials for:

Using Arduino IDE

Using Android

Using OpenMV IDE

On Linux-based devices

Using the DRP-AI library

Using WebAssembly

Did you know?

Input to the run_classifier function

The input to the run_classifier function is always a signal_t structure with raw sensor values. This structure has two properties:

  • total_length - the total number of values. This should be equal to EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE (from model_metadata.h). E.g. if you have 3 sensor axes, 100Hz sensor data, and 2 seconds of data this should be 600.

  • get_data - a function that retrieves slices of data required by the DSP process. This is used in some DSP algorithms (like all audio-based ones) to page in the required data, and thus saves memory. Using this function you can store (f.e.) the raw data in flash or external RAM, and page it in when required.

F.e. this is how you would page in data from flash:

// this is placed in flash
const float features[300] = { 0 };

// function that pages the data in
int raw_feature_get_data(size_t offset, size_t length, float *out_ptr) {
    memcpy(out_ptr, features + offset, length * sizeof(float));
    return 0;
}

int main() {
    // construct the signal
    signal_t signal;
    signal.total_length = 300;
    signal.get_data = &raw_feature_get_data;
    // ... rest of the application
float features[30] = { 0 };
signal_t signal;
numpy::signal_from_buffer(features, 30, &signal);
// ... rest of the application
const int16_t features[300] = { 0 };

int raw_feature_get_data(size_t offset, size_t length, float *out_ptr) {
    return numpy::int16_to_float(features + offset, out_ptr, length);
}

int main() {
    signal_t signal;
    signal.total_length = 300;
    signal.get_data = &raw_feature_get_data;
    // ... rest of the application

Signal layout for time-series data

Signals are always a flat buffer, so if you have multiple sensor data you'll need to flatten it. E.g. for sensor data with three axes:

Input data:
Axis 1:  9.8,  9.7,  9.6
Axis 2:  0.3,  0.4,  0.5
Axis 3: -4.5, -4.6, -4.8

Signal: 9.8, 0.3, -4.5, 9.7, 0.4, -4.6, 9.6, 0.5, -4.8

Signal layout for image data

The signal for image data is also flattened, starting with row 1, then row 2 etc. And every pixel is a single value in HEX format (RRGGBB). E.g.:

Input data (3x2 pixel image):
BLACK RED  RED
GREEN BLUE WHITE

Signal: 0x000000, 0xFF0000, 0xFF0000, 0x00FF00, 0x0000FF, 0xFFFFFF

Directly quantize image data

If you're doing image classification and have a quantized model, the data is automatically quantized when reading the data from the signal to save memory. This is automatically enabled when you call run_impulse. To control the size of the buffer that's used to read from the signal in this case you can set the EI_DSP_IMAGE_BUFFER_STATIC_SIZE macro (which also allocates the buffer statically).

Static allocation

To statically allocate the neural network model, set this macro:

  • EI_CLASSIFIER_ALLOCATION_STATIC=1

You can easily control where the tensor arena is allocated by defining the EI_TENSOR_ARENA_LOCATION macro, specifying .where_to_allocate. This is particularly useful for large size requirements and when the target has external RAM:

For example:

  • EI_TENSOR_LOCATION="<.where_to_allocate>" - Here, <.where_to_allocate> can be a memory region such as ".sram," depending on your target's linker file.

Additionally we support full static allocation for quantized image models. To do so set this macro:

  • EI_DSP_IMAGE_BUFFER_STATIC_SIZE=1024

Static allocation is not supported for other DSP blocks at the moment.

with our C++, Node.js, Python or Go SDKs.

These tutorials show you how to run your impulse, but you'll need to hook in your sensor data yourself. We have a number of examples on how to do that in thedocumentation, or you can use the full firmware for any of theas a starting point - they have everything (including sensor integration) already hooked up. Or keep reading for documentation about the sensor format and inputs that we expect.

You can build binaries for supported development boards straight from the studio. These will include your full impulse. See

If you have your data already in RAM you can use thefunction to construct the signal:

The get_data function expects floats to be returned, but you can use theandhelper functions if your own buffers are int8_t or int16_t (useful to save memory). E.g.:

We do have an end-to-end example on constructing a signal from a frame buffer in RGB565 format, which is easily adaptable to other image formats, see:.

Running your impulse as a C++ library
Running your impulse on your desktop
Running your impulse on Zephyr on a Nordic semiconductor development board
Running your impulse in Simplicity Studio on the TB Sense 2
Running your impulse on STM32 using STM32Cube.MX
Running your impulse on the Himax WE-I Plus
Running your impulse on the Espressif ESP-EYE (ESP32)
Running your impulse on the Raspberry Pi RP2040
Running your impulse on the Sony Spresense
Running your impulse on the Syntiant TinyML Board
Running your impulse on the TI LaunchPad using GCC and the SimpleLink SDK
Running your impulse in an Arduino sketch
Running your impulse on Android
Running your impulse on the OpenMV Cam H7 Plus
Running your impulse on a Linux system
Running your impulse on the Renesas RZ/V2L
Running your impulse on the Renesas RZ/V2H
Running your impulse in Node.js
Running your impulse in the browser
Data forwarder
fully supported development boards
Edge Impulse Firmwares
signal_from_buffer
int8_to_float
int16_to_float
example-signal-from-rgb565-frame-buffer