LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dasard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • 1. Prerequisites
  • 2. Building a dataset
  • 4. Design an Impulse
  • 5. Configure the Flatten block
  • 6. Configure the neural network
  • 7. Model testing
  • 8. Running the impulse on your device
  • 9. Conclusion

Was this helpful?

Export as PDF
  1. Tutorials
  2. End-to-end tutorials
  3. Time-series

Environmental (Sensor fusion)

PreviousHR/HRVNextData

Last updated 3 months ago

Was this helpful?

Neural networks are not limited to working with one type of data at a time. One of their biggest advantages is that they are incredibly flexible with the type of input data, so long as the format and ordering of that data stays the same from training to inference. As a result, we can use them to perform sensor fusion for a variety of tasks.

Sensor fusion is the process of combining data from different types of sensors or similar sensors mounted in different locations, which gives us more information to make decisions and classifications. For example, you could use temperature data with accelerometer data to get a better idea of a potential anomaly!

In this tutorial, you will learn how to use Edge Impulse to perform sensor fusion on the Arduino Nano 33 BLE Sense.

Example Project: You can find the dataset and impulse used throughout this tutorial in.

Multi-impulse vs multi-model vs sensor fusion

Running multi-impulse refers to running two separate projects (different data, different DSP blocks and different models) on the same target. It will require modifying some files in the EI-generated SDKs. See the

Running multi-model refers to running two different models (same data, same DSP block but different tflite models) on the same target. See how to run a motion classifier model and an anomaly detection model on the same device in.

Sensor fusion refers to the process of combining data from different types of sensors to give more information to the neural network. To extract meaningful information from this data, you can use the same DSP block (like in this tutorial), multiples DSP blocks, or use neural networks embeddings like thistutorial.

1. Prerequisites

For this tutorial, you'll need a.

2. Building a dataset

For this demo, we'll show you how to identify different environments by using a fusion of temperature, humidity, pressure, and light data. In particular, I'll have the Arduino board identify different rooms in my house as well as outside. Note that the we assume that the environment is static--if I turn out lights or the outside temperature changes, the model will not work. However, it demonstrates how we can combine different sensor data with machine learning to do classification!

As we will be collecting data from our Arduino board connected to a computer, it helps to have a laptop that you can move to different rooms.

Create a new project on the Edge Impulse studio.

Connect the Arduino Nano 33 BLE to your computer. Follow theto upload the Edge Impulse firmware to the board and connect it to your project.

Go to Data acquisition. Under Record new data, select your device and set the label to bedroom. Change Sensor to Environmental + Interactional, set the Sample length to 10000 ms and Frequency to 12.5Hz.

Stand in one of your rooms with your Arduino board (and laptop). Click Start sampling and slowly move the board around while data is collected. After sampling is complete, you should see a new data plot with a different line for each sensor.

Variations

Try to stand in different parts of each room while collecting data.

Repeat this process to record about 3 minutes of data for the bedroom class. Try to stand in a different spot in the room while collecting data--we want a robust dataset that represents the features of each room. Head to another room and repeat data collection. Continue doing this until you have around 3 minutes of data for each of the following classes:

  • Bedroom

  • Hallway

  • Outside

You are welcome to try other rooms or locations. For this demo, I found that my bedroom, kitchen, and living room all exhibited similar environmental and lighting properties, so the model struggled to tell them apart.

Head to Dasard and scroll down to Danger zone. Click Perform train/test split and follow the instructions in the pop-up window to split your dataset into training and testing groups. When you're done, you can head back to Data acquisition to see that your dataset has been split. You should see about 80% of your samples in Training data and about 20% in Test data.

4. Design an Impulse

Head to Create impulse. Change the Window increase to 500 ms. Add a Flatten block. Notice that you can choose which environmental and interactional sensor data to include. Deselect proximity and gesture, as we won't need those to detect rooms. Add a Classification (Keras) learning block

Click Save impulse.

5. Configure the Flatten block

Head to Flatten. You can select different samples and move the window around to see what the DSP result will look like for each set of features to be sent to the learning block.

The Flatten block will compute the average, minimum, maximum, root-mean square, standard deviation, skewness, and kurtosis of each axis (e.g. temperature, humidity, brightness, etc.). With 7 axes and 7 features computed for each axis, that gives us 49 features for each window being sent to the learning block. You can see these computed features under Processed features.

Click Save parameters. On the next screen, select Calculate feature importance and click Generate features.

After a few moments, you should be able to explore the features of your dataset to see if your classes are easily separated into categories.

Interestingly enough, it looks like temperature and red light values were the most important features in determining the location of the Arduino board.

6. Configure the neural network

With our dataset collected and features processed, we can train our machine learning model. Click on NN Classifier. Change the Number of training cycles to 300 and click Start training. We will leave the neural network architecture as the default for this demo.

During training, parameters in the neural network's neurons are gradually updated so that the model will try to guess the class of each set of data as accurately as possible. When training is complete, you should see a Model panel appear on the right side of the page.

The Confusion matrix gives you an idea of how well the model performed at classifying the different sets of data. The top row gives the predicted label and the column on the left side gives the actual (ground-truth) label. Ideally, the model should predict the classes correctly, but that's not always the case. You want the diagonal cells from the top-left to the bottom-right to be as close to 100% as possible.

The On-device performance provides some statistics about how the model will likely run on a particular device. By default, an Arm Cortex-M4F running at 80 MHz is assumed to be your target device. The actual memory requirements and run time may vary on different platforms.

7. Model testing

Rather than simply assume that our model will work when deployed, we can run inference on our test dataset as well as on live data.

First, head to Model testing, and click Classify all. After a few moments, you should see results from your test set.

You can click on the three dots next to an item and select Show classification. This will give you a classification result screen where you can see results information in more detail.

Additionally, we can test the impulse in a real-world environment to make sure the model has not overfit the training data. To do that, head to Live classification. Make sure your device is connected to the Studio and that the Sensor, Sample length, and Frequency match what we used to initially capture data.

Click Start sampling. A new sample will be captured from your board, uploaded, and classified. Once complete, you should see the classification results.

In the example above, we sampled 10 seconds of data from the Arduino. This data is split into 1-second windows (the window moves over 0.5 seconds each time), and the data in that window is sent to the DSP block. The DSP block computes the 49 features that are then sent to the trained machine learning model, which performs a forward pass to give us our inference results.

As you can see, the inference results from all of the windows claimed that the Arduino board was in the bedroom, which was true! This is great news for our model--it seems to work even on unseen data.

8. Running the impulse on your device

Now that we have an impulse with a trained model and we've tested its functionality, we can deploy the model back to our device. This means the impulse can run locally without an internet connection to perform inference!

Edge Impulse can package up the entire impulse (preprocessing block, neural network, and classification code) into a single library that you can include in your embedded software.

Click on Deployment in the menu. Select the library that you would like to create, and click Build at the bottom of the page.

Running your impulse locally

9. Conclusion

Well done! You've trained a neural network to determine the location of a development board based on a fusion of several sensors working in tandem. Note that this demo is fairly limited--as the daylight or temperature changes, the model will no longer be valid. However, it hopefully gives you some ideas about how you can mix and match sensors to achieve your machine learning goals.

We can't wait to see what you'll build! 🚀

An impulse is a combination of preprocessing (DSP) blocks followed by machine learning blocks. It will slice up our data into smaller windows, use signal processing to extract features, and then train a machine learning model. Because we are using environmental and light data, which are slow-moving averages, we will use thefor preprocessing.

You can also look at the Feature importance section to get an idea of which features are the most important in determining class membership. You can read more about feature importance.

If you see a lot of confusion between classes, it means you need to gather more data, try different features, use a different model architecture, or train for a longer period of time (more epochs). Seeto learn about ways to increase model performance.

Seeto learn how to deploy your impulse to a variety of platforms.

If you're interested in more, see our tutorials onor. If you have a great idea for a different project, that's fine too. Edge Impulse lets you capture data from any sensor, buildto extract features, and you have full flexibility in your Machine Learning pipeline with the learning blocks.

Flatten block
here
this guide
this tutorial
Sound recognition
Image classification
custom processing blocks
this example project
multi-impulse tutorial
this tutorial
sensor fusion using Embeddings
supported device
Arduino Nano 33 BLE Sense tutorial
Arduino board connected to Edge Impulse project
Record data from multiple sensors
Raw sensor readings
Data split into training and testing sets
Impulse designed to work with sensor fusion
View processed features from one sample
View groupings of the most prominent features
View the most important features
Neural network architecture
Confusion matrix of the validation set
Results from running inference on the test set
View detailed classification results from a test sample
Classify live data
Live classification results
Deploy a trained machine learning model to any number of devices